汽車內外飾件廣泛使用塑料聚合物,其多數部件在高溫、高壓等惡劣環境下工作,塑料的阻燃改性是車用聚合物的基本要求。添加阻燃劑是聚合物阻燃改性的基本手段,而聚合物的阻燃劑的機理是什么?

阻燃劑是能夠阻止塑料引燃或抑制火焰傳播的助劑。根據其使用方法可分為添加型和反應型兩類。按照化學結構,阻燃劑又可分為無機和有機兩類。各類阻燃劑的阻燃機理,對于如今的阻燃工程師們可以說是必備和必背的。今天,我們就來為大家總結介紹下幾種常見典型阻燃劑的阻燃機理。
一、鹵系阻燃劑阻燃機理
含鹵阻燃劑與含磷阻燃劑配合使用能產生顯著的協同效應。對于鹵-磷阻燃協同效應,人們提出鹵-磷配合使用能互相促進分解,并形成比單獨使用具有更強阻燃效果的鹵-磷化合物及其轉化物 PBr3、PBr· 、POBr3 等。用裂解氣相色譜、差熱分析、差示掃描量熱分析、氧指數測定、阻燃劑程序升溫觀察等方法對鹵一磷協同效應進行的研究表明,鹵-磷配合使用時阻燃劑的分解溫度比單獨使用時略低,且分解非常劇烈,燃燒區的氯磷化合物及其水解產物形成的煙氣云團能較長時間逗留在燃燒區,形成強大的氣相隔離層。
關于磷-氮相互作用機理研究得不夠完善,一般認為用氮化物(如尿、氰胺、胍、雙氰胺、羥甲基三聚氰胺等)能促進磷酸與纖維素的磷?;磻?。形成的磷酸胺更易于纖維素發生成酯反應,這種酯的熱穩定性較磷酸酯的熱穩定性好。磷-氮阻燃體系能促使糖類在較低溫度下分解形成焦炭和水,并增加焦炭殘留物生產量,從而提高阻燃效果。磷化物和氮化物在高溫下形成膨脹性焦炭層,它起著隔熱阻氧保護層的作用,含氮化合物起著發泡劑和焦炭增強劑的作用?;驹胤治龅弥瑲埩粑镏泻?、磷、氧三種元素,它們在火焰溫度下形成熱穩定性的無定形物,猶如玻璃體,作為纖維素的一個絕熱保護層。
三氧化二銻不能單獨作為阻燃劑(含鹵聚合物除外),但與鹵類阻燃劑并用則有很大的協同增強效應。這是因為三氧化二銻在鹵化物存在的情況下,燃燒時所生成的 SbCl3,SbBr3 等鹵化銻的相對密度很大,覆蓋在聚合物表面起覆蓋效應,并且在氣態時也有捕捉自由基的作用。例如,三氧化二銻與氯類阻燃劑并用時,由于氯化物受熱而分解出氯化氫,氯化氫和三氧化二銻反應生成三氯化銻和氯氧化銻,氯氧化銻受熱分解繼續生成三氯化銻。
水合硼酸鋅與鹵系阻燃劑配合使用具有良好的協同效應。在燃燒條件下,它們及其裂解產物之間通過相互作用,幾乎能使所有阻燃元素都能發揮阻燃作用。水合硼酸鋅與鹵系阻燃劑反應生成二鹵化鋅和三鹵化硼,它們能在氣相中捕獲 HO· 、 H· ,在固相中形成玻璃狀隔離層,隔熱,隔氧,生成的水稀釋燃燒區的氧并帶走反應熱,因此能發揮較大的阻燃作用。

二、膨脹型阻燃體系阻燃機理
膨脹型阻燃劑主要由三部分組成:炭化劑(炭源)、炭化催化劑(酸源)、膨脹劑(氣源)。炭化劑為膨脹多孔炭層的炭源,一般是含碳豐富的多官能團(如—OH)物質,季戊四醇(PER)及其二縮醇、三縮醇是常用的炭化劑。炭化催化劑一般是可在加熱條件下釋放無機酸的化合物。無機酸要求沸點高,而氧化性不太強。聚磷酸銨(APP)為常用的炭化催化劑。膨脹劑為受熱放出惰性氣體的化合物,一般是銨類和酰胺類物質,如尿素、密胺、雙氰胺及其衍生物。
1、各組分的選擇準則如下:
A、酸源:為了具有實用性,酸源必須能夠使含碳多元醇脫水。在火災發生前,我們不希望脫水反應發生,所以常用的酸源都是鹽或酯。酸源釋放酸必須在較低的溫度進行,尤其應低于多元醇的分解溫度。如果有機部分有助于成炭,使用有機磷化物效果更好。
B、炭源:炭源的有效性與碳含量及活性羥基的數量有關。炭源應在其本身或基體分解前的較低溫度下與催化劑反應。
C、氣源:發泡劑必須在適當的溫度分解,并釋放出大量氣體。發泡應在熔化后、固化前發生。適當的溫度與體系有關。對于特定的膨脹阻燃聚合物體系,有時并不需要 3 個組分同時存在,有時聚合物本身可以充當其中的某一元素。使用以上準則可預測大多數體系的有效性。
膨脹型阻燃劑受熱時,炭化劑在炭化催化劑作用下脫水成炭,碳化物在膨脹劑分解的氣體作用下形成蓬松有孔封閉結構的炭層。一旦形成,其本身不燃,且可削弱聚合物與熱源間的熱傳導,并阻止氣體擴散。一旦燃燒得不到足夠的燃料和氧氣,燃燒的聚合物便會自熄。
2、此炭層經歷以下幾步形成:
A、在較低溫度下由酸源放出能酯化多元醇和可作為脫水劑的無機酸。
B、在稍高于釋放酸的溫度下,發生酯化反應,而體系中的胺則可作為酯化的催化劑。
C、體系在酯化前或酯化過程中熔化。
D、反應產生的水蒸汽和由氣源產生的不燃性氣體使熔融體系膨脹發泡。
E、反應接近完成時,體系膠化和固化,最后形成多孔泡沫炭層。
在上面論述的基礎上,看上去似乎任何含有這幾種官能團的化合物都能發泡,只是發泡的程度不同,其實這是錯誤的。為了發泡,各步反應必須幾乎同時發生,但又必須按嚴格的順序進行。膨脹型阻燃劑也可能具有氣相阻燃作用,因為磷-氮-碳體系遇熱可能產生 NO 及 NH3,而它們也能使自由基結合而導致燃燒鏈反應終止。
膨脹型阻燃體系主要成分可分為酸源、炭源、氣源三個部分。酸源一般為無機酸或加熱至 100-250 ℃ 時生成無機酸的化合物,如磷酸、硫酸、硼酸、各種磷酸銨鹽、磷酸酯和硼酸鹽等;碳源(成炭劑)是形成泡沫炭化層的基礎,一般為富碳的多羥基化合物,如淀粉、季戊四醇和它的二聚物、三聚物以及含有輕基的有機樹脂等;氣源(發泡源)多為胺或酰胺類化合物,如三聚氰胺、雙氰胺、聚磷酸胺等。
膨脹體系成炭的結構復雜,影響因素眾多。聚合物主體的化學結構和物理特性、膨脹阻燃劑的組成、燃燒和裂解時的條件(如溫度和氧含量)、交聯的反應速率等等諸多因素都會對膨脹成炭的結構產生影響。而膨脹炭層的熱保護效應不僅取決于焦炭產量、炭層高度、炭層結構、保護炭層的熱穩定性,也取決于炭層的化學結構,尤其是環狀結構的出現增加了熱穩定性,此外還有化學鍵的強度以及交聯鍵的數量。
氣源膨脹型阻燃體系阻燃機理普遍認為是凝聚相阻燃,首先聚磷酸胺受熱分解,生成具有強脫水作用的磷酸和焦磷酸,使季戊四醇酯化,進而脫水炭化,反應形成的水蒸汽及三聚氰胺分解的氨氣使炭層膨脹,最終形成一層多微孔的炭層,從而隔絕空氣和熱傳導,保護聚合物主體,達到阻燃目的。
膨脹型阻燃劑添加到聚合物材料中,必須具備以下性質:熱穩定性好,能經受聚合物加工過程中 200 ℃ 以上的高溫;由于熱降解要釋放出大量揮發性物質,并形成殘渣,因而該過程不應對膨脹發泡過程產生不良影響;該類阻燃劑系均勻分布在聚合物中,在材料燃燒時能形成一層完全覆蓋在材料表面的膨脹炭質;阻燃劑必須與被阻燃高聚物有良好的相容性,不能與高聚物和添加劑發生不良作用,不能過多惡化材料的物理、機械性能。膨脹型阻燃劑優于一般的阻燃劑之處在于無鹵、無氧化銻:低煙、少毒、無腐蝕性氣體;膨脹阻燃劑生成的炭層可以吸附熔融著火的聚合物,防止其滴落傳播火災。
三、銨鹽的阻燃機理
銨鹽的熱穩定性較差,受熱時釋放出氨氣,如 (NH4)2SO4,其分解過程如下:
(NH4)2SO4 → NH4HSO4
NH4HSO4 → H2SO4 + NH3↑
釋放出的氨氣為難燃性氣體,它稀釋了空氣中氧;形成的 H2SO4 起著脫水炭化催化劑的作用。通常認為后一種作用是主要的。另外的實驗表明,NH3 在火中還發生下列反應:
NH3+O2→N2+H2O
并伴有深度氧化產物 N2O4 等,從中可看出 NH3 不僅有物理阻燃作用,而且還有化學阻燃作用。
四、納米復合阻燃材料阻燃機理
納米復合材料單獨提出來,雖然都屬于復合阻燃,但其原理有點不同。納米復合材料是指將材料中的一個或多個組分以納米尺寸或分子水平地分散在另一個組分基體中,此研究只有十幾年的歷史。實驗表明,因納米材料以超細的尺寸存在,所以各種類型的納米復合材料的性能比其相應的宏觀或微米級復合材料均有較大的改善,其中材料的熱穩定性和阻燃性能也會較大幅度的提高。
某些鱗片狀無機物能夠在物理和化學的作用下碎裂成納米尺寸的結構微區,其片層間距一般在零點幾到幾個納米,它們不僅可以讓某些聚合物插層進入納米尺寸的夾層空間中,形成“插層型納米復合材料”,而且,無機夾層還會被聚合物撐開形成長徑比很大的單片狀無機物,均勻地分散在聚合物的基體中,形成“層離型納米復合材料”。利用多孔或層狀無機化合物的特性,制備無機/聚合物納米復合材料,在熱分解和燃燒過程中,可能形成炭及無機鹽多層結構,起到隔熱及阻止可燃氣體逸出的作用,使高聚物得以阻燃。
另外,用無機/聚合物納米復合材料還具有防腐、防滲漏、耐磨耐候的作用。目前已在尼龍/粘土納米復合材料、PS/粘土納米復合材料、PET/粘土納米復合材料、PBT/粘土納米復合材料、PP/粘土納米復合材料等納米復合材料的研究方面取得了可喜的成績。
五、有機硅阻燃劑阻燃機理
將硅酮化合物作為阻燃劑的研究始于 20 世紀 80 年代初期。1981年,Kamber 等,發表關于聚碳酸酯與聚甲基硅氧烷共混,可使阻燃性能提高的研究報告。雖然有機硅阻燃劑的研究開發落后于鹵系及磷系阻燃劑,但是,有機硅阻燃劑作為一類新型的無鹵阻燃劑,以其優異的阻燃性、成型加工性和環境友好而獨具風采。有機硅阻燃劑有硅油、硅樹脂、帶功能團的聚硅氧烷、聚碳酸酯一硅氧烷共聚物丙烯酸酯一硅氧烷復合材料以及硅凝膠等。以硅酮化合物阻燃的高分子材料,硅酮阻燃劑多半會遷移到材料的表面,形成表面為硅酮富集層的高分子梯度材料。
一旦燃燒時,就會生成硅酮特有的、含有 一Si一O 鍵和 一Si一C一 鍵的無機隔熱絕緣保護層,既阻止了燃燒生成的分解成物外逸,又抑制了高分子材料的熱分解,達到了高阻燃化、低發煙量、低有害性的目的。目前開發應用的有機硅阻燃劑有美國 DowCorning 公司開發并商品化的“D.C.RM”系列阻燃劑,日本 NEC 與 GE 東芝有機硅公司共同研究開發的硅酮阻燃劑“XC-99-B6645",還有美國 GE 公司開發的 SFR104 有機硅樹脂等。

轉自——鏈塑網公眾號



